University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 3 - Motion in Two or Three Dimensions - Problems - Exercises - Page 96: 3.39

Answer

(a) $A = 0~m$ $B = 2.00~m/s^2$ $C = 50.0~m$ $D = 0.500~m/s^3$ (b) $\vec{v} = (0\hat{i}+ 0\hat{j})~m/s$ $\vec{a} = (4.00~\hat{i}+ 0\hat{j})~m/s^2$ (c) $v_x = 40.0~m/s$ $v_y = 150~m/s$ $v = 155~m/s$ (d) $\vec{x} = (200\hat{i}+550\hat{j})~m$

Work Step by Step

(a) $x(t)= A+Bt^2$ $v_x(t) = \frac{dx}{dt} = 2Bt$ $a_x(t) = \frac{dv_x}{dt} = 2B$ $y(t)= C+Dt^3$ $v_y(t) = \frac{dy}{dt} = 3Dt^2$ $a_y(t) = \frac{dv_y}{dt} = 6Dt$ When t = 0: $(x,y) = (0~m,50.0~m)$ $A+Bt^2 = A+B(0~s)^2 = 0~m$ $A = 0~m$ $C+Dt^3 = C+D(0~s)^3 = 50.0~m$ $C = 50.0~m$ When t = 1.00 s: $a_x = 4.00~m/s^2 = 2B$ $B = 2.00~m/s^2$ $a_y = 3.00~m/s^2 = 6D(1.00~s)$ $D = 0.500~m/s^3$ (b) $\vec{v} = 2B(0~s)\hat{i}+ 3D(0~s)^2\hat{j}$ $\vec{v} = (0\hat{i}+ 0\hat{j})~m/s$ $\vec{a} = 2B\hat{i}+ 6D(0~s)\hat{j}$ $\vec{a} = (4.00~\hat{i}+ 0\hat{j})~m/s^2$ (c) At t = 10.0 s: $v_x = 2Bt = (2)(2.00~m/s^2)(10.0~s)$ $v_x = 40.0~m/s$ $v_y = 3Dt^2 = (3)(0.500~m/s^3)(10.0~s)^2$ $v_y = 150~m/s$ We can find the speed $v$ of the rocket. $v = \sqrt{(40.0~m/s)^2+(150~m/s)^2}$ $v = 155~m/s$ (d) At t = 10.0 s: $\vec{x} = ((A+Bt^2)\hat{i}+(C+Dt^3)\hat{j})~m$ $\vec{x} = ((0+(2.00~m/s^2)(10.0~s)^2)\hat{i}+((50.0~m)+(0.500~m/s^3)(10.0~s)^3)\hat{j})~m$ $\vec{x} = (200\hat{i}+550\hat{j})~m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.