Answer
$$T_{E}=0.833 N$$
$$T_{F}=0.931 N$$
Work Step by Step
$W_{r}=(0.12)(9.8)=1.176 N$
$T_{A}=(0.036)(9.8)=0.353 N$
$T_{B}=(0.036+0.024)(9.8)=0.588 N$
$T_{C}=T_{B}cos(53.1)=(0.588)cos(53.1)=0.353 N$
$T_{D}=T_{B}cos(36.9)=(0.588)cos(36.9)=0.47 N$
$\tau = (T_{E})(1m)-(0.8m)T_{D}sin(36.9)-(0.2)T_{C}sin(53.1)-(W_{r})(0.5m)$
$T_{E}=(0.8)(0.47)sin(36.9)+(0.2)(0.353)sin(53.1)+(0.5)(0.12)(9.8)=0.833 N$
$\Sigma F_{y}=T_{E}+T_{F}-(W_{Y}+W_{A}+W_{B})(9.8)=0$
$T_{F}=(0.12+0.036+0.024)(9.8)-(0.833)=0.931 N$