University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 11 - Equilibrium and Elasticity - Problems - Exercises - Page 363: 11.61

Answer

(a) $ 4.90 \, \mathrm{m} $ (b) $ 60 \, \mathrm{N} $

Work Step by Step

(a) I choose to define positive torque as counterclockwise and select the hinge as the origin, thereby eliminating the unknown force it exerts on the pole (see diagram). Since the pole is in equilibrium, I know that the net torque is zero, and I can solve for $T_y$ and then the angle $\theta$: $$ \Sigma \tau = T_yl - 0.5w_\mathrm{p}l - w_\mathrm{w}l = 0 \Rightarrow T_y = 0.5w_\mathrm{p} + w_\mathrm{w} \Rightarrow $$ $$ T\sin{\theta} = 0.5w_\mathrm{p} + w_\mathrm{w} \Rightarrow \theta = \arcsin \frac{0.5w_\mathrm{p} + w_\mathrm{w}}{T} = $$ $$ \arcsin \frac{0.5(200 \, \mathrm{N}) + 600 \, \mathrm{N}}{1000 \, \mathrm{N}} = 44.43^\circ $$ Now we can use this angle to find $h$: $$ h = l \tan{\theta} = (5.00 \, \mathrm{m})\tan{44.43^\circ} = 4.90 \, \mathrm{m} $$ (b) Finding the new angle and then tension: $$ \theta_2 = \arctan{\frac{4.90 \, \mathrm{m} - 0.50 \, \mathrm{m}}{5.00 \, \mathrm{m}}} = 41.35^\circ$$ $$ T_2 = \frac{0.5w_\mathrm{p} + w_\mathrm{w}}{\sin{\theta_2}} = \frac{0.5(200 \, \mathrm{N}) + 600 \, \mathrm{N}}{\sin{41.35^\circ}} = 1060 \, \mathrm{N} \Rightarrow$$ $$ \Delta T = 60 \, \mathrm{N} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.