Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 1 - Introduction and Basic Concepts - Problems - Page 48: 1-104

Answer

$m=899.61kg$

Work Step by Step

First we calculate the volume of the balloon: $V=\frac{4\pi r^3}{3}=\frac{4\pi (12m/2)^3}{3}=904.78m^3$ Then the bouyancy force is: $F_{b}=\rho_{air}gV=1.16\frac{kg}{m^3}*9.81\frac{m}{s^2}*904.78m^3=10296.03N$ Knowing the bouyancy force, the maximum mass will be: $m_{max}=\frac{F_{b}}{g}=\frac{10296.03N}{9.81\frac{m}{s^2}}=1049.54kg$ The mass of helium is: $m_{He}=\rho_{He}*V_{He}=\frac{1.16}{7}\frac{kg}{m^3}*904.78m^3=149.93kg$ Then the maximum amount of load will be: $m=m_{max}-m_{He}=1049.54kg-149.93kg=899.61kg$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.