Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 3 - Vectors in Physics - Problems and Conceptual Exercises - Page 81: 72

Answer

$\vec {a_{avg}}=(-0.15m/s^2)\hat x+(-3.73m/s^2)\hat y$

Work Step by Step

We find the components of $\vec {v_i}$ and $\vec{v_f}$ $\vec{v_i}=(4.10m/s)cos33.5^{\circ}\hat x+(4.10m/s)sin 33.5^{\circ}\hat y$ $\vec{v_i}=(3.42m/s)\hat x+(2.26m/s)\hat y$ The components of $\vec{v_f}$ are $\vec{v_f}=(6.05m/s)cos59.0^{\circ}\hat x-(6.05m/s)sin 59.0^{\circ}\hat y$ $\vec{v_f}=(3.12m/s)\hat x+(-5.19m/s)\hat y$ Now $\Delta \vec v=\vec{v_f}-\vec{v_i}$ $\Delta \vec{v}=[(3.12m/s)\hat x+(-5.19m/s)\hat y]-[(3.42m/s)\hat x+(2.26m/s)\hat y]$ $\Delta \vec v=(-0.30m/s)\hat x+(-7.45m/s)\hat y$ We can find the average acceleration as $\vec{a_{avg}}=\frac{\Delta \vec v}{\Delta t}$ $\vec {a_{avg}}=\frac{(-0.30m/s)\hat x+(-7.45m/s)\hat y}{2.00}$ $\vec {a_{avg}}=(-0.15m/s^2)\hat x+(-3.73m/s^2)\hat y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.