Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 52: 68

Answer

(a) - $10.0^{\circ}$: $a=1.71~m/s^2$ - $20.0^{\circ}$: $a=3.37~m/s^2$ - $30.0^{\circ}$: $a=4.88~m/s^2$ (b) - $10.0^{\circ}$: $a=1.70~m/s^2$ - $20.0^{\circ}$: $a=3.36~m/s^2$ - $30.0^{\circ}$: $a=4.91~m/s^2$

Work Step by Step

$x=x_0+v_0t+\frac{1}{2}at^2$ $x-x_0=v_0t+\frac{1}{2}at^2$ $\Delta x=v_0t+\frac{1}{2}at^2$ (a) We are supposing the cart is released from rest. - $10.0^{\circ}$: $\Delta x=1.00~m$, $v_0=0$, $t=1.08~s$ $\Delta x=v_0t+\frac{1}{2}at^2$ $1.00~m=0t+\frac{1}{2}a(1.08~s)^2=a(0.5832~s^2)$ $a=\frac{1.00~m}{0.5832~s^2}=1.71~m/s^2$ - $20.0^{\circ}$: $\Delta x=1.00~m$, $v_0=0$, $t=0.770~s$ $\Delta x=v_0t+\frac{1}{2}at^2$ $1.00~m=0t+\frac{1}{2}a(0.770~s)^2=a(0.29645~s^2)$ $a=\frac{1.00~m}{0.29645~s^2}=3.37~m/s^2$ - $30.0^{\circ}$: $\Delta x=1.00~m$, $v_0=0$, $t=0.640~s$ $\Delta x=v_0t+\frac{1}{2}at^2$ $1.00~m=0t+\frac{1}{2}a(0.640~s)^2=a(0.2048~s^2)$ $a=\frac{1.00~m}{0.2048~s^2}=4.88~m/s^2$ (b) $a=g~sin~\theta$ - $10.0^{\circ}$: $a=g~sin~\theta=(9.81~m/s^2)(sin~10.0^{\circ})=1.70~m/s^2$ - $20.0^{\circ}$: $a=g~sin~\theta=(9.81~m/s^2)(sin~20.0^{\circ})=3.36~m/s^2$ - $30.0^{\circ}$: $a=g~sin~\theta=(9.81~m/s^2)(sin~30.0^{\circ})=4.91~m/s^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.