Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 52: 66

Answer

(a) $5.2~m$ (b) $2.6~m$ (c) $2.6~m/s$

Work Step by Step

Constant-acceleration motion: $v_{av}=\frac{v_0+v}{2}$ And $v_{av}=\frac{\Delta x}{\Delta t}$. Rearranging the equation: $\Delta x=(v_{av})(\Delta t)$ - From $0$ to $4~s$: $v_{av}=\frac{v_0+v}{2}=\frac{0+V}{2}=\frac{V}{2}$ $\Delta x_1=(v_{av})(\Delta t)=\frac{V}{2}(4~s)=V(2~s)$ - From $4~s$ to $6~s$: $v_{av}=\frac{v_0+v}{2}=\frac{V+V}{2}=V$ $\Delta x_2=(v_{av})(\Delta t)=V(2~s)$ - From $6~s$ to $8~s$: $v_{av}=\frac{v_0+v}{2}=\frac{V+0}{2}=\frac{V}{2}$ $\Delta x_3=(v_{av})(\Delta t)=\frac{V}{2}(2~s)=V(1~s)$ Now: $\Delta x_1+\Delta x_2+\Delta x_3=13~m$ $V(2~s)+V(2~s)+V(1~s)=13~m$ $V(5~s)=13~m$ $V=\frac{13~m}{5~s}=2.6~m/s$ (a) $\Delta x_1=V(2~s)=(2.6~m/s)(2~s)=5.2~m$ (b) $\Delta x_3=V(1~s)=(2.6~m/s)(1~s)=2.6~m$ (c) $V=2.6~m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.