Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 1 - Introduction to Physics - Problems and Conceptual Exercises - Page 16: 40

Answer

The equations $v=\frac{1}{2}at$ and $v^{2}=ax$ are dimensionally consistent.

Work Step by Step

Dimension of a (acceleration): $\frac{[L]}{[T]^{2}}$. Dimension of t (time): [T]. Dimension of x (distance): [L]. Dimension of v (velocity): $\frac{[L]}{[T]}$. The numbers 2 and $\frac{1}{2}$ have no dimensions. (a) $v=\frac{1}{2}at$ $\frac{[L]}{[T]}=\frac{[L]}{[T]^{2}}\times[T]$ $\frac{[L]}{[T]}=\frac{[L]}{[T]}$. This equation is dimensionally consistent. (b) $v=\frac{1}{2}at^{2}$ $\frac{[L]}{[T]}=\frac{[L]}{[T]^{2}}\times[T]^{2}$ $\frac{[L]}{[T]}=[L]$. But, $\frac{[L]}{[T]}\ne[L]$. This equation is not dimensionally consistent. (c) $t=\frac{a}{v}$ $[T]=\frac{\frac{[L]}{[T]^{2}}}{\frac{[L]}{[T]}}$ $[T]=\frac{[L]}{[T]^{2}}\frac{[T]}{[L]}$ $[T]=\frac{1}{[T]}=[T]^{-1}$. But, $[T]\ne[T]^{-1}$. This equation is not dimensionally consistent. (d) $v^{2}=ax$ $(\frac{[L]}{[T]})^{2}=\frac{[L]}{[T]^{2}}[L]$ $\frac{[L]^{2}}{[T]^{2}}=\frac{[L]^{2}}{[T]^{2}}$. This equation is dimensionally consistent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.