Answer
(a) $F = 57.6~N$
(b) $F = 4.65\times 10^{-35}~N$
(c) The ratio of the electric force to the gravitational force is $1.24\times 10^{36}$
Work Step by Step
(a) We can find the magnitude of the electric force:
$F = \frac{k~q_1~q_2}{r^2}$
$F = \frac{(9.0\times 10^9~N~m^2/C^2)(1.6\times 10^{-19}~C)(1.6\times 10^{-19}~C)}{(2.0\times 10^{-15}~m)^2}$
$F = 57.6~N$
(b) We can find the magnitude of the gravitational force:
$F = \frac{G~m_1~m_2}{r^2}$
$F = \frac{(6.67\times 10^{-11}~m^3/kg~s^2)(1.67\times 10^{-27}~kg)(1.67\times 10^{-27}~kg)}{(2.0\times 10^{-15}~m)^2}$
$F = 4.65\times 10^{-35}~N$
(c) We can find the ratio of the electric force to the gravitational force:
$\frac{57.6~N}{4.65\times 10^{-35}~N} = 1.24\times 10^{36}$