Answer
$(a)\space 45^{\circ}$
$(b)\space 35^{\circ}$
$(c)\space 55^{\circ}$
Work Step by Step
We can determine the angle $\theta$ from the relation $tan\theta$ by using trigonometry,
We can write,
$tan\theta=\frac{A_{y}}{A_{x}}=\gt\theta=tan^{-1}(\frac{A_{y}}{A_{x}})$
$(a)\space \theta=tan^{-1}(\frac{12\space m}{12\space m})=tan^{-1}1=45^{\circ}$
$(a)\space \theta=tan^{-1}(\frac{12\space m}{17\space m})=tan^{-1}(0.7)=35^{\circ}$
$(a)\space \theta=tan^{-1}(\frac{17\space m}{12\space m})=tan^{-1}(1.42)=55^{\circ}$