Introduction to Quantum Mechanics 2nd Edition

Published by Cambridge University Press
ISBN 10: 1107179866
ISBN 13: 978-1-10717-986-8

Chapter 1 - Section 1.3 - Probability - Problems - Page 12: 1.3

Answer

a.) $A=\sqrt{\frac{\lambda}{\pi}}$ b.) $\langle x\rangle=a$, $\langle x^2\rangle=a^2 + \frac{1}{2\lambda}$ c.) The plot should be a gaussian distrubtion. See below.

Work Step by Step

a.) As instructed, we are to use Eq. 1.16 in the book which is given by the following, $$1=\int_{-\infty}^{\infty} \rho(x) dx.$$ Substituting the given distribution $\rho(x)=A e^{-\lambda(x-a))^2}$ leads to the following equation, $$1=\int_{-\infty}^{\infty} A e^{-\lambda(x-a))^2} dx.$$ The integral above can be evaluated by introducing the following variables, $u=x-a, du=dx, u: -\infty \to \infty$. This leads to, $$1=A \int_{-\infty}^{\infty} e^{-\lambda u^2} dx.$$ The integral above is just the known Gaussian integral, that is, $\int_{-\infty}^{\infty} e^{-\lambda u^2} dx=\sqrt{\pi/\lambda}.$ Hence, $$1=A\sqrt{\frac{\lambda}{\pi}}$$ $$A=\sqrt{\frac{\lambda}{\pi}}.$$ b.) Calculate first for $\langle x \rangle$. $$\langle x \rangle=A\int_{\infty}^{\infty}x e^{-\lambda(x-a)^2 dx}$$ Use the same variables as in part a. This leads to $$\langle x \rangle=A\int_{\infty}^{\infty}(u+a) e^{-\lambda u^2 dx}=A\left[\int_{\infty}^{\infty}u e^{-\lambda u^2 dx}+a\int_{\infty}^{\infty} e^{-\lambda u^2 dx}\right]$$ $$=A\left(0+a\sqrt{\frac{\pi}{\lambda}}\right) = a$$ Next is $\langle x^2 \rangle$. $$\langle x \rangle=A\int_{\infty}^{\infty}x^2 e^{-\lambda(x-a)^2 dx}$$ $$=A\left[\int_{\infty}^{\infty}u^2 e^{-\lambda u^2 dx}+2a\int_{\infty}^{\infty} e^{-\lambda u^2 dx}+\int_{\infty}^{\infty}a^2 e^{-\lambda u^2 dx}\right]$$ $$=A\left[\frac{1}{2\lambda}+0+a^2\frac{\pi}{\lambda}\right]$$ $$=a^2+\frac{1}{2\lambda}$$ Finally, $$\sigma^2=\langle x \rangle-\langle x^2 \rangle=a^2 + \frac{1}{2\lambda}-a^2=\frac{1}{2\lambda}$$ c.) See plot. As can be seen, it is a gaussian distribution whose peak is located at (a,A).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.