Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 9 - Center of Mass and Linear Momentum - Questions - Page 245: 6

Answer

We can rank the groups according to center-of-mass speed, from the greatest to the least: $(d) \gt (c) \gt (a) \gt (b)$

Work Step by Step

We can find an expression for the center of mass speed in each case. (a) Along the x axis: $P_x = \sum m_i~v_i = M~v_{com,x}$ $v_{com,x} = \frac{\sum m_i~v_i}{M}$ $v_{com,x} = \frac{mv-mv+0}{3m}$ $v_{com,x} = 0$ Along the y axis: $P_y = \sum m_i~v_i = M~v_{com,y}$ $v_{com,y} = \frac{\sum m_i~v_i}{M}$ $v_{com,y} = \frac{-mv+0+0}{3m}$ $v_{com,y} = -\frac{v}{3}$ We can write an expression for the speed of the center of mass: $v_{com} = \frac{v}{3}$ (b) Along the x axis: $P_x = \sum m_i~v_i = M~v_{com,x}$ $v_{com,x} = \frac{\sum m_i~v_i}{M}$ $v_{com,x} = \frac{mv-mv+0+0}{4m}$ $v_{com,x} = 0$ Along the y axis: $P_y = \sum m_i~v_i = M~v_{com,y}$ $v_{com,y} = \frac{\sum m_i~v_i}{M}$ $v_{com,y} = \frac{mv-mv+0+0}{4m}$ $v_{com,y} = 0$ We can write an expression for the speed of the center of mass: $v_{com} = 0$ (c) Along the x axis: $P_x = \sum m_i~v_i = M~v_{com,x}$ $v_{com,x} = \frac{\sum m_i~v_i}{M}$ $v_{com,x} = \frac{mv-mv+0+0}{4m}$ $v_{com,x} = 0$ Along the y axis: $P_y = \sum m_i~v_i = M~v_{com,y}$ $v_{com,y} = \frac{\sum m_i~v_i}{M}$ $v_{com,y} = \frac{-mv-mv+0+0}{4m}$ $v_{com,y} = -\frac{v}{2}$ We can write an expression for the speed of the center of mass: $v_{com} = \frac{v}{2}$ (d) Along the x axis: $P_x = \sum m_i~v_i = M~v_{com,x}$ $v_{com,x} = \frac{\sum m_i~v_i}{M}$ $v_{com,x} = \frac{mv+mv+0+0}{4m}$ $v_{com,x} = \frac{v}{2}$ Along the y axis: $P_y = \sum m_i~v_i = M~v_{com,y}$ $v_{com,y} = \frac{\sum m_i~v_i}{M}$ $v_{com,y} = \frac{-mv-mv+0+0}{4m}$ $v_{com,y} = -\frac{v}{2}$ We can write an expression for the speed of the center of mass: $v_{com} = \sqrt{(\frac{v}{2})^2+(-\frac{v}{2})^2} = \frac{\sqrt{2}~v}{2}$ We can rank the groups according to center-of-mass speed, from the greatest to the least: $(d) \gt (c) \gt (a) \gt (b)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.