Answer
$n = 4, 5, 6,...$
$m_l = 0, \pm 1, \pm 2, \pm 3$
$m_s = \pm~\frac{1}{2}$
Work Step by Step
For each value of $n$, the values of $l$ can be $~~l = 0, 1, 2,...,(n-1)$
If $l=3,$ then the value of $n$ can be $~~n = 4, 5, 6,...$
In general, the allowed values of $m_l$ are $~~m_l = 0, \pm 1, \pm 2,...,\pm l$
If $l=3,$ then the allowed values of $m_l$ are $~~m_l = 0, \pm 1, \pm 2, \pm 3$
For each value of $m_l$, there are 2 possible values of $m_s$
$m_s = \pm~\frac{1}{2}$