Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 39 - More about Matter Waves - Problems - Page 1215: 8

Answer

$L = 3.5\times 10^{-10}~m$

Work Step by Step

We can find the energy difference between states when light of wavelength 80.78 nm is emitted: $E = \frac{hc}{\lambda}$ $E = \frac{(6.626\times 10^{-34}~J~s)(3.0\times 10^8~m/s)}{80.78\times 10^{-9}~m}$ $E = 2.46076\times 10^{-18}~J$ Light with the longest wavelength is absorbed when the electron jumps from the first excited state where $n=2$ to the next state $n=3$. We can use the expression for the energy difference to find $L$: $E_3-E_2 = 2.46076\times 10^{-18}~J$ $(\frac{h^2}{8m~L^2})~(3)^2 - (\frac{h^2}{8m~L^2})~(2)^2 = 2.46076\times 10^{-18}~J$ $\frac{5~h^2}{8m~L^2} = 2.46076\times 10^{-18}~J$ $L^2 = \frac{5~h^2}{(8m)~(2.46076\times 10^{-18}~J)}$ $L = \sqrt{\frac{5~h^2}{(8m)~(2.46076\times 10^{-18}~J)}}$ $L = \sqrt{\frac{(5)~(6.626\times 10^{-34}~J~s)^2}{(8)(9.109\times 10^{-31}~kg)~(2.46076\times 10^{-18}~J)}}$ $L = 3.5\times 10^{-10}~m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.