Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 35 - Interference - Problems - Page 1078: 77

Answer

The radius of curvature of the lower surface of the lens is $1.00\,\mathrm{m}$.

Work Step by Step

Using the expression derived in the previous problem for the ring number: $m={r^2\over \lambda R}-{1\over 2}$ For the nth ring, $m=n-1$, (since $m=0$ is the first ring) $n-1={(0.162\times 10^{-2})^2\over 546\times 10^{-9} R}-{1\over 2}$ For the (n+20)th ring, $m=n+19$, and we have $n+19={(0.368\times 10^{-2})^2\over 546\times 10^{-9} R}-{1\over 2}$ Subtracting the above two equations, \begin{align*} n+19-(n-1)&={(0.368\times 10^{-2})^2\over 546\times 10^{-9} R}-{1\over 2}-{(0.162\times 10^{-2})^2\over 546\times 10^{-9} R}+{1\over 2}\\ 20&={(0.368\times 10^{-2})^2-(0.162\times 10^{-2})^2\over 546\times 10^{-9} R}\\ R&={0.109\times 10^{-4}\over 0.109\times 10^{-4}}\\ R&=1.00\,\mathrm{m} \end{align*} The radius of curvature of the lower surface of the lens is $1.00\,\mathrm{m}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.