Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 3 - Vectors - Problems - Page 57: 17a

Answer

$38.26\ m$

Work Step by Step

Given Magnitude of each vector = 50 m As the vectors $\vec{a}, \vec{b}\ and\ \vec{c}$ of magnitude 50 m are making angles of $30^{\circ} , 195^{\circ}\ and\ 315^{\circ}$ with the positive x axis, then the vectors in unit vector notation is $\vec{a} = 50m\ \cos30^{\circ} \hat{i}+50m\ \sin30^{\circ} \hat{j}$ $\vec{a} = 43.30\ m\ \hat{i}+ 25\ m\ \hat{j}$ $\vec{b} = 50m\ \cos195^{\circ} \hat{i}+50m\ \sin195^{\circ} \hat{j}$ $\vec{b} = -48.30\ m\ \hat{i}+(-12.94\ m)\ \hat{j}$ $\vec{c} = 50m\ \cos315^{\circ} \hat{i}+50m\ \sin315^{\circ} \hat{j}$ $\vec{c} = 35.35\ m\ \hat{i}+(-35.35\ m)\ \hat{j}$ The sum of three vector $\vec{a}, \vec{b}\ and\ \vec{c}$ is given by $\vec{a}+\vec{b}+\vec{c} = 43.30\ m\ \hat{i}+ 25\ m\ \hat{j}-48.30\ m\ \hat{i}-12.94\ m\ \hat{j}+35.35\ m\ \hat{i}-35.35\ m\ \hat{j}$ $\vec{a}+\vec{b}+\vec{c}=(30.35\hat{i}-23.3\hat{j})\ m $ The magnitude of the vector is given by $\mid{\vec{a}+\vec{b}+\vec{c}}\mid = \sqrt(30.35^2+(-23.3)^2)$ $\mid{\vec{a}+\vec{b}+\vec{c}}\mid=38.26\ m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.