Answer
$12^{o}$ clockwise from the +x axis, or
$168^{o}$ counterclockwise from the +x axis
Work Step by Step
The individual moves are (meters understood as units)
$\vec{a}=20\vec{i} + 60\vec{j},$
$\vec{b}=b_{x}\vec{i} - 70\vec{j},$
$\vec{c}=-20\vec{i} + c_{y}\vec{j},$
$\vec{d}=-60\vec{i} -70\vec{j},$
The resultant:
$\vec{r}=\vec{a}+\vec{b}+\vec{c}+\vec{d}=-140\vec{i}+30\vec{j}$
The angle $\theta$ of the resultant is
$\displaystyle \tan^{-1}\frac{30m}{-140m}=-12^{o}$,
which is
$12^{o}$ clockwise from the +x axis, or
$168^{o}$ counterclockwise from the +x axis