Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 2 - Motion Along a Straight Line - Problems - Page 39: 100a

Answer

$t_{in\ air}\approx17.35\mbox{s}$

Work Step by Step

Using equation $H_{freely}=\frac{1}{2}gt_{freely}^2$ we can derive duration of falling freely.$$t_{freely}=\sqrt{\frac{2H_{freely}}{g}}$$ Now we can derive speed just before opening the parachute - maximum speed during given flight.$$v_{max}=gt_{freely}=\sqrt{2gH_{freely}}$$ The next step is to find the difference between maximal and final speed.$$\Delta v=v_{max}-v_{final}=\sqrt{2gH_{falling}}-v_{final}$$ Duration of flight using parachute can be derived using equation $\Delta v=a_{decel}t_{decel}$ $$t_{decel}=\frac{\Delta v}{a_{decel}}=\frac{\sqrt{2gH_{falling}}-v_{final}}{a_{decel}}$$ Knowing that duration of full flight is the duration of both free fall and decelerating, we can derive time in air. $$t_{in\ air}=t_{freely}+t_{decel}=\sqrt{\frac{2H_{freely}}{g}}+\frac{\sqrt{2gH_{falling}}-v_{final}}{a_{decel}}=\sqrt{\frac{2\times50\mbox{m}}{9.8\frac{\mbox{m}}{\mbox{s}^2}}}+\frac{\sqrt{2\times{9.8}\frac{\mbox{m}}{\mbox{s}^2}\times50\mbox{m}}-3\frac{\mbox{m}}{\mbox{s}}}{2\frac{\mbox{m}}{\mbox{s}^2}}\approx17.35\mbox{s}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.