Answer
(a) $T=244K$
(b)$T=247K$
Work Step by Step
(a) We know that
PV=nRT
This can be rearranged as:
$T=\frac{PV}{nR}$
We plug in the known values to obtain:
$T=\frac{101325\times 2\times 10^{-3}}{1\times 8.314}=244K$
(b) According to Vander waals equation
$(P+\frac{n^2a}{V^2})(V-nb)=nRT$
This can be rearranged as:
$T=\frac{(P+\frac{n^2a}{V^2})(V-nb)}{nR}$
We plug in the known values to obtain:
$T=\frac{1013250+\frac{(1)^2\times 0.14}{(2\times 10^{-3})^2}(2\times 10^{-3}-1\times 3.9\times 10^{-5})}{1\times 8.314}$
$T=247K$