Answer
a). (1) $\sqrt 2$
b). $900J$
Work Step by Step
a). $W^{'}=2W=2\times\frac{1}{2}kx^{2}=\frac{1}{2}k(\sqrt 2x)^{2}$
So, if twice the amount of work is done, the stretch increase by factor of $\sqrt 2$.
b). $100J=\frac{1}{2}\times k\times 0.01^{2}$
Now, $W^{'}=\frac{1}{2}\times k \times 0.03^{2}$
From above 2 equations, $W^{'}=9\times100=900J$