Answer
0.993 mCi
Work Step by Step
Initial activity $R_{0}=10.0\,mCi$
Decay constant $\lambda =\frac{0.693}{t_{1/2}}=\frac{0.693}{18.0\,min}=0.0385\,min^{-1}$
$t=1\,h=60\,min$
Recall that $\ln(\frac{R_{0}}{R})=\lambda t$ where $R$ is the current activity.
$\implies\ln(\frac{10.0\,mCi}{R})=0.0385\,min^{-1}\times60\,min=2.31$
Taking the inverse $\ln$ of both sides, we have
$\frac{10.0\,mCi}{R}=e^{2.31}=10.0744$
Or $R= \frac{10.0\,mCi}{10.0744}=0.993\,mCi$