Answer
We can rank the intervals in order of the velocity component $v_x$ from greatest positive to greatest negative:
$EF \gt AB = CD \gt BC \gt DE$
Work Step by Step
The slope of the position versus time graph is the velocity. We can find the slope for each interval:
AB:
$v_x = \frac{\Delta x}{\Delta t} = \frac{20~m}{2~s} = 10~m/s$
BC:
$v_x = \frac{\Delta x}{\Delta t} = \frac{0}{1~s} = 0~m/s$
CD:
$v_x = \frac{\Delta x}{\Delta t} = \frac{10~m}{1~s} = 10~m/s$
DE:
$v_x = \frac{\Delta x}{\Delta t} = \frac{-30~m}{1~s} = -30~m/s$
EF:
$v_x = \frac{\Delta x}{\Delta t} = \frac{20~m}{1~s} = 20~m/s$
We can rank the intervals in order of the velocity component $v_x$ from greatest positive to greatest negative:
$EF \gt AB = CD \gt BC \gt DE$