College Physics (4th Edition)

Published by McGraw-Hill Education
ISBN 10: 0073512141
ISBN 13: 978-0-07351-214-3

Chapter 2 - Problems - Page 70: 97

Answer

(a) The tension in the rope holding the pulley is $\sqrt{2}~Mg$ (b) $\theta = 45^{\circ}$

Work Step by Step

(a) Let $T_w$ be the tension in the rope holding the weight. Then the vertical section of this rope has a tension of $T_w = Mg$ and the horizontal section of this rope has a tension of $T_w = Mg$. Let $T_p$ be the tension in the rope holding the pulley. Then the horizontal component of $T_p$ is equal in magnitude to $T_w$ and the vertical component of $T_p$ is equal in magnitude to $T_w$. We can find $T_p$: $T_p = \sqrt{T_w^2+T_w^2} = \sqrt{2}~T_w = \sqrt{2}~Mg$ (b) We can find the angle $\theta$ that the rope makes with the ceiling: $tan~\theta = \frac{T_{p,y}}{T_{p,x}} = \frac{T_w}{T_w}$ $tan~\theta = 1$ $\theta = tan^{-1}~1$ $\theta = 45^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.