Answer
The volume decreases by $6.44\times 10^{-5}~cm^3$
Work Step by Step
We can find the pressure difference $\Delta P$:
$\Delta P = (9.12\times 10^6~Pa)-(1.01\times 10^5~Pa)$
$\Delta P = 9.02\times 10^6~Pa$
We can find the fraction that the volume changes:
$\frac{\Delta V}{V_0} = -\frac{1}{B}~\Delta P$
$\frac{\Delta V}{V_0} = -\frac{1}{140\times 10^9~Pa}~(9.02\times 10^6~Pa)$
$\frac{\Delta V}{V_0} = -6.44\times 10^{-5}$
We can find the decrease in volume:
$\Delta V = (-6.44\times 10^{-5})(1.0~cm^3) = -6.44\times 10^{-5}~cm^3$
The volume decreases by $6.44\times 10^{-5}~cm^3$.