Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 4 - Exercises and Problems - Page 71: 44

Answer

$88.42N , \space Direction-76.7^{\circ} from\space x+\space axis$

Work Step by Step

Please see the image first. Let's take, Mass of the puck (m) $=166\times10^{-3}\space kg$ Time of force acted (t) $=112\times10^{-3}\space s$ Force applied $= F$ x- direction component of force $=F_{x}$ y- direction component of force $=F_{y}$ In here we have to apply Newton's second law in both x,y directions seperately as follows. $\rightarrow F=ma$ Let's plug known values into this equation. $F_{x}=166\times10^{-3}\space kg\times\frac{(82.1cos45^{\circ}-44.3)\space m/s}{112\times10^{-3}s}$ $F_{x}=20.38\space N$ $\uparrow F=ma$ Let's plug known values into this equation. $F_{y}=166\times10^{-3}\space kg\times\frac{(82.1sin45^{\circ}-0)\space m/s}{112\times10^{-3}s}$ $F_{y}=86.04\space N$ $F=\sqrt{F_{x}^{2}+F_{y}^{2}}$ $F=\sqrt {(20.38\space N)^{2}+(86.04\space N)^{2}}=88.42\space N$ $tan\alpha=\frac{F_{y}}{F_{x}}= \frac{86.04}{20.38}= 4.2$ $\alpha=tan^{-1}(4.2)=76.7^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.