Answer
6.83 m
Work Step by Step
Please see the attached image first.
Here we use the Bernoulli's equation, $P+\frac{1}{2}\rho V^{2}+\rho gy = constant$
Where $P- Pressure$, $\frac{1}{2}\rho V^{2}-Kinetic\space energy\space per\space unit \space volume$, $\rho gy- Gravitational \space potential \space energy \space per\space unit \space volume.$
Let's plug known values into this equation.
$P_{0}+0+0=P_{A}+\frac{1}{2}\rho V^{2}+0$
$P_{0}=\frac{33}{100}P_{0}+\rho gh$
$\frac{67P_{0}}{100}=\rho gh$ => $\frac{67P_{0}}{100\rho g}=h$
$\frac{67\times1\times10^{5}kg/ms^{2}}{100\times1000\space kg/m^{3}\times 9.8\space m/s^{2}}=h$
$6.83=h$
Maximum well depth = 6.83 m