Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 13 - Exercises and Problems - Page 246: 32

Answer

$(a)\space 2.63\times10^{5}N/m$ $(b)\space 2.09\space m/s$ $(c)\space 90\space m/s^{2}$

Work Step by Step

(a) We use the equation Frequency $(f) = \frac{1}{2\pi}\sqrt {\frac{K}{m}}$ to find the spring constant (K). $f = \frac{1}{2\pi}\sqrt {\frac{K}{m}}$ $f^{2}=\frac{1}{4\pi^{2}}\times\frac{K}{m}$ $4\pi^{2}f^{2}m=K$; Let's plug known values into this equation. $4\pi^{2}\times(6.85\space s^{-1})^{2}\times 142\space kg=K$ $263044.5\space N/m=K$ $2.63\times10^{5}N/m=K$ (b) We use the equation $V_{max}=A\omega$ to find the maximum acceleration. $V_{max}=A\omega-(1)$ $\omega=2\pi f-(2)$ $(2)=\gt (1)$ $V_{max}=A\times2\pi f$ ; Let's plug known values into this equation. $V_{max}=4.86\times10^{-2}m\times2\times\pi\times6.85\space s^{-1}$ $V_{max}=2.09\space m/s$ (c) We use the equation $a_{max}=\omega^{2}A$ to find the maximum acceleration. $a_{max}=\omega^{2}A-(3)$ $(2)=\gt(3)$ $a_{max}=A\times (2\pi f)^{2}$ ; Let's plug known values into this equation. $a_{max}=4.86\times10^{-2}\times4\pi^{2}\times6.85^{2}s^{-2}$ $a_{max}=90\space m/s^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.