General Chemistry: Principles and Modern Applications (10th Edition)

Published by Pearson Prentice Hal
ISBN 10: 0132064529
ISBN 13: 978-0-13206-452-1

Chapter 17 - Additional Aspects of Acid-Base Equilibria - Example 17-2 - Demonstrating the Common Ion Effect: A Solution of a Weak Acid and a Salt of that Weak Acid - Page 749: Practice Example B

Answer

14.8 g of $NaCH_3COO$ in order to get a 0.100 M $CH_3COOH$ solution to pH = 5.00

Work Step by Step

1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ CH_3COOH ]& [ CH_3COO^- ]& [ H_3O^{+} ]\\ Initial& 0.100 & y & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.100 -x& y +x& 0 +x\\ \end{vmatrix}$$ Where "y" is the amount of $NaCH_3COO$ we must add to get pH = 5.00 $$[H_3O^+] = 10^{-pH} = 10^{-5.00} = 1.0 \times 10^{-5} \space M$$ $x = [H_3O^+] = 1.0 \times 10^{-5} \space M$ Substituting into the Ka expression: $$K_a = 1.8 \times 10^{-5} = \frac{(y + 1.0 \times 10^{-5})(1.0 \times 10^{-5})}{0.100 - 1.0 \times 10^{-5}}$$ Solving for y: y = 0.180 2. Now, find how many grams we need to get this molarity: $ NaCH_3COO $ : ( 22.99 $\times$ 1 )+ ( 1.008 $\times$ 3 )+ ( 12.01 $\times$ 2 )+ ( 16.00 $\times$ 2 )= 82.03 g/mol - Use all the information as conversion factors: $$ 1.00 \space L \times \frac{ 0.180 \space mol}{1 \space L} \times \frac{ 82.03 \space g}{1 \space mol} = 14.8 \space g$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.