Answer
(a) $35.14 \space ^{\circ} M$
(b) $-59.27 ^{\circ} M$
Work Step by Step
$$T(^{\circ}M) = a \space T(^{\circ}C) + b$$ $$0 =a(-38.9) + b$$ $$38.9 \space a = b$$
$$T(^{\circ}M) = a \space T(^{\circ}C) + b $$ $$100 = a\space (356.9) + b$$ $$100 = 356.9 \space a + (38.9 \space a)$$ $$100 = 395.8 \space a$$ $$a = \frac{100}{395.8} \approx 0.253$$
$$b = 38.9 \times (0.253) \approx 9.84 $$
$$T(^{\circ} M) = 0.253 \space T(^{\circ} C) + 9.84$$
(a) $$T(^{\circ} M) = 0.253 \times (100) + 9.84 = 35.14$$
(b) $$T(^{\circ} M) = 0.253 \times (-273.15) + 9.84 = -59.27$$