Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 15 - Exercises - Page 715: 45

Answer

$$K_c = 764$$

Work Step by Step

1. Find each molarity. $ H_2 $ : ( 1.008 $\times$ 2 )= 2.016 g/mol - Calculate the amount of moles: $$ 0.763 \space g \times \frac{1 \space mol}{ 2.016 \space g} = 0.378 \space mol$$ - Calculate the molarity: $$ \frac{ 0.378 \space mol}{ 3.67 \space L} = 0.103 \space M $$ $ I_2 $ : ( 126.9 $\times$ 2 )= 253.8 g/mol - Calculate the amount of moles: $$ 96.9 \space g \times \frac{1 \space mol}{ 253.8 \space g} = 0.382 \space mol$$ - Calculate the molarity: $$ \frac{ 0.382 \space mol}{ 3.67 \space L} = 0.104 \space M $$ $ HI $ : ( 1.008 $\times$ 1 )+ ( 126.9 $\times$ 1 )= 127.9 g/mol - Calculate the amount of moles: $$ 90.4 \space g \times \frac{1 \space mol}{ 127.9 \space g} = 0.707 \space mol$$ - Calculate the molarity: $$ \frac{ 0.707 \space mol}{ 3.67 \space L} = 0.193 \space M $$ 2. At equilibrium, these are the concentrations of each compound: $ [ H_2 ] = 0.103 \space M - x$ $ [ I_2 ] = 0.104 \space M - x$ $ [ HI ] = 0 \space M + 2x$ 3. Using the concentration of $ HI $ at equilibrium, find x: $ 0 + 2 x = 0.193 $ $ 2 x = 0.193 $ $ x = \frac{ 0.193 }{ 2 } $ $x = 0.0965 $ $ [ H_2 ] = 0.103 \space M - 0.0965 =6.50 \times 10^{-3} $ $ [ I_2 ] = 0.104 \space M - 0.0965 =7.50 \times 10^{-3} $ $ [ HI ] = 0 \space M + 2*( 0.0965 )=0.193 $ - The exponent of each concentration is equal to its balance coefficient. $$K_C = \frac{[Products]}{[Reactants]} = \frac{[ HI ] ^{ 2 }}{[ H_2 ][ I_2 ]}$$ 4. Substitute the values and calculate the constant value: $$K_C = \frac{( 0.193 )^{ 2 }}{( 6.50 \times 10^{-3} )( 7.50 \times 10^{-3} )} = 764$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.