Chemistry and Chemical Reactivity (9th Edition)

Published by Cengage Learning
ISBN 10: 1133949649
ISBN 13: 978-1-13394-964-0

Chapter 16 Principles of Chemical Reactivity: The Chemistry of Acids and Bases - Study Questions - Page 629c: 56

Answer

pH = 8.841

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [C_6H_5N{H_3}^+] = x$ -$[C_6H_5NH_2] = [C_6H_5NH_2]_{initial} - x = 0.12 - x$ For approximation, we consider: $[C_6H_5NH_2] = 0.12M$ 2. Now, use the Kb value and equation to find the 'x' value. $Ka = \frac{[OH^-][C_6H_5N{H_3}^+]}{ [C_6H_5NH_2]}$ $Ka = 4 \times 10^{- 10}= \frac{x * x}{ 0.12}$ $Ka = 4 \times 10^{- 10}= \frac{x^2}{ 0.12}$ $ 4.8 \times 10^{- 11} = x^2$ $x = 6.928 \times 10^{- 6}$ Percent ionization: $\frac{ 6.928 \times 10^{- 6}}{ 0.12} \times 100\% = 0.005774\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [C_6H_5N{H_3}^+] = x = 6.928 \times 10^{- 6}M $ 3. Calculate the pH: $pOH = -log[OH^-]$ $pOH = -log( 6.928 \times 10^{- 6})$ $pOH = 5.159$ $pH + pOH = 14$ $pH + 5.159 = 14$ $pH = 8.841$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.