Answer
The molarity of sucrose in the drink is equal to $0.355$ $M$.
Work Step by Step
$355$ mL = $355 \times 10^{-3}$ L = 0.355 L
1. Calculate the molar mass $(C_{12}H_{22}O_{11})$:
12.01* 12 + 1.008* 22 + 16* 11 = 342.296g/mol
2. Calculate the number of moles $(C_{12}H_{22}O_{11})$
$n(moles) = \frac{mass(g)}{mm(g/mol)}$
$n(moles) = \frac{ 43}{ 342.296}$
$n(moles) = 0.126$
3. Find the concentration in mol/L $(C_{12}H_{22}O_{11})$:
$C(mol/L) = \frac{n(moles)}{volume(L)}$
$ C(mol/L) = \frac{ 0.126}{ 0.355} $
$C(mol/L) = 0.355$ $M$