Answer
(a) $154$ $pm$ is larger.
(b) $2.02\times 10^2km$ is larger.
(c) $3.1 \times 10^{15}µA$ is larger.
Work Step by Step
(a)
Convert all the values to "meters"
1 $pm$ = $10^{-12}$ $m$ :
$154 $ $pm = 1.54 \times 10^2 \times (10^{-12}) $ $m$
$1.54 \times 10^{-10}$ $m$
1 $cm$ = $10^{-2}$ $m$
$7.7 \times 10^{-9}$ $cm = 7.7 \times 10^{-9}$ $\times 10^{-2}$ $m$
$7.7 \times 10^{-11} $ $m$
- Now, compare the values.
$1.54 \times 10^{-10}$ $m$ $> 7.7 \times 10^{-11}$ $m$
So, $154$ $pm$ is larger.
(b)
Convert all the measurements to "meters":
$1.86 \times 10^{11}µm \times \frac{10^{-6} m}{1µm} = 1.86 \times 10^{5}m$
$2.02 \times 10^{2} km \times \frac{10^{3}m}{1 km} = 2.02 \times 10^{5}m$
- Now, compare the values.
$2.02 \times 10^5m > 1.86 \times 10^5 m $
So, $2.02\times 10^2km$ is larger.
(c)
Convert all the measurements to "Ampere":
$2.9GA \times \frac{10^9A}{1GA}= 2.9 \times 10^9A$
$3.1 \times 10^{15} µA \times \frac{10^{-6}A}{1µA} = 3.1 \times 10^9A$
- Now, compare the values.
$3.1 \times 10^9A > 2.9 \times 10^9A$
So, $3.1 \times 10^{15}µA$ is larger.