Answer
(a) $6.02 \times 10^1$ $km$ is larger.
(b) $46\ µs$ is larger.
(c) $200,098\ g$ is larger.
Work Step by Step
(a)
Convert all the values for "meters"
1 $cm$ = $10^{-2}$ $m$ :
$5.63 \times 10^6 $ $cm = 5.63\times 10^6 \times (10^{-2}) $ $m$
$5.63 \times 10^4$ $m$
1 $km$ = $10^3$ $m$
$6.02 \times 10^1$ $km = 6.02 \times 10^1$ $\times 10^3$ $m$
$6.02 \times 10^4 $ $m$
- Now, compare the measures.
$6.02 \times 10^4$ $m$ $> 5.63 \times 10^4$ $m$
So, $6.02 \times 10^1$ $km$ is larger.
(b)
Convert all the measurements for "seconds":
$46µs \times \frac{10^{-6} s}{1µs} = 4.6 \times 10^{-5}s$
$3.2 \times 10^{-2} ms \times \frac{10^{-3}s}{1 ms} = 3.2 \times 10^{-5} s$
$4.6 \times 10^{-5}s > 3.2 \times 10^{-5}s $
So, $46\ µs$ is larger.
(c)
Convert all the measurements for "grams":
$200,098 g = 2.00098 \times 10^{5} g$
$17 \times 10^1kg \times \frac{10^{3}g}{1 kg} = 1.7 \times 10^5g$
$2.00098g \times 10^{5}g > 1.7 \times 10^{5}g $
So, $200,098g$ is larger.