Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company
ISBN 10: 0078021529
ISBN 13: 978-0-07802-152-7

Chapter 4 - Questions and Problems - Page 179: 4.81

Answer

0.215 g of AgCl will precipitate.

Work Step by Step

1. Calculate the amount of moles of each reactant: $$30.0 \ mL \times \frac{1 \ L}{ 1000 \ mL} \times \frac{0.150 \ mol \ CaCl_2}{1 \ L} = 4.5 \times 10^{-3} mol$$ $$15.0 \ mL \times \frac{1 \ L}{1000 \ mL} \times \frac{0.100 \ mol \ AgNO_3}{1 \ L} = 1.5 \times 10^{-3} mol$$ 2. Write the balanced equation: $$CaCl_2(aq) + 2 \ AgNO_3(aq) \longrightarrow 2 \ AgCl(s) + Ca(NO_3)_2(aq)$$ $$4.5 \times 10^{-3} mol \ CaCl_2 \times \frac{2 \ mol \ AgCl}{1 \ mol \ CaCl_2} = 9.0 \times 10^{-3} mol \ AgCl$$ $$1.5 \times 10^{-3} mol \ AgNO_3 \times \frac{2 \ mol \ AgCl}{2 \ mol \ AgNO_3} = 1.5 \times 10^{-3} mol \ AgCl$$ $AgNO_3$ is the limiting reactant. $ AgCl $ : ( 35.45 $\times$ 1 )+ ( 107.9 $\times$ 1 )= 143.4 g/mol $$1.5 \times 10^{-3} mol \times \frac{143.4 \ g}{1 \ mol} = 0.215 \ g$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.