Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company
ISBN 10: 0078021529
ISBN 13: 978-0-07802-152-7

Chapter 17 - Questions and Problems - Page 826: 17.53

Answer

$ K_{sp} (M_2X_3) = (3.3 \times 10^{-93})$

Work Step by Step

1. Calculate the number of moles $n(moles) = \frac{mass(g)}{mm(g/mol)}$ $n(moles) = \frac{ 3.6\times 10^{- 17}}{ 288}$ $n(moles) = 1.25\times 10^{- 19}$ 2. Find the concentration in mol/L: $1.25 \times 10^{-19}$ mol in 1L: $1.25 \times 10^{-19} M$ 3. Write the $K_{sp}$ expression: $ M_2X_3(s) \lt -- \gt 2{M}^{3+}(aq) + 3{X}^{2-}(aq)$ $ K_{sp} = [{M}^{3+}]^ 2[{X}^{2-}]^ 3$ 4. Determine the ion concentrations: $[{M}^{3+}] = [M_2X_3] * 2 = [1.25 \times 10^{-19}] * 2 = 2.5 \times 10^{-19}$ $[{X}^{2-}] = [M_2X_3] * 3 = 3.75 \times 10^{-19}$ 5. Calculate the $K_{sp}$: $ K_{sp} = (2.5 \times 10^{-19})^ 2 \times (3.75 \times 10^{-19})^ 3$ $ K_{sp} = (6.25 \times 10^{-38}) \times (5.273 \times 10^{-56})$ $ K_{sp} = (3.296 \times 10^{-93}) = 3.3 \times 10^{-93}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.