Answer
$\angle C = 95^{\circ}$
$B \approx 19$ m
$A \approx 11$ m
Work Step by Step
1. Find $\angle C$
$\angle C = 180 - (\angle B + \angle A)$
$= 180 - (48+37)$
$= 180 - 85$
$= 95^{\circ}$
2. Find $B$
$\frac{B}{sin(48)} = \frac{18}{sin(95)}$
$B = \frac{18sin(48)}{sin(95)}$
by GDC / calculator
$B = 18.917...$m
$B \approx 19$ m
3. Find $A$
$\frac{A}{sin(37)} = \frac{18}{sin(95)}$
$A = \frac{18sin(37)}{sin(95)}$
by GDC / calculator
$A = 10.874...$ m
$A \approx 11$ m