Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Test - Page 287: 12

Answer

$\left\{0, \frac{2\pi}{3}, \frac{4\pi}{3}\right\}$

Work Step by Step

Subtract $\cos{x}$ to both sides of the equation: $0=\cos{(2x)}-\cos{x}$ RECALL: $\cos{(2x)}=2\cos^2{x}-1$ Use the identity above to obtain: $0=\cos{(2x)} -\cos{x} \\0=(2\cos^2{x}-1)-\cos{x} \\0=2\cos^2{x}-\cos{x}-1$ Factor the trinomial to obtain: $0=(2\cos{x}+1)(\cos{x}-1)$ Use the Zero Factor Property by equating each factor to zero, then solve each equation to obtain: \begin{array}{ccc} &2\cos{x}+1=0 &\text{or} &\cos{x}-1=0 \\&2\cos{x}=-1 &\text{or} &\cos{x}=1 \\&\cos{x}=-\frac{1}{2} &\text{or} &\cos{x}=1 \\&x=\cos^{-1}{(-\frac{1}{2})} &\text{or} &x=\cos^{-1}{(1)} \end{array} Use a calculator's inverse cosine function to obtain: \begin{array}{ccc} &x=\frac{2\pi}{3} &\text{or} &x=0 \end{array} Note that for an angle $x$ in Quadrant I, $\cos{x} = \cos{(2\pi-x)}$. Thus, if $\frac{2\pi}{3}$ is a solution, then $(2\pi-\frac{2\pi}{3})=\frac{4\pi}{3}$ is also a solution. Therefore, the solution set is: $\left\{0, \frac{2\pi}{3}, \frac{4\pi}{3}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.