Answer
$\theta_2 = 48.7^{\circ}$
Work Step by Step
We can use Snell's law to find $\theta_2$:
$\frac{c_1}{c_2} = \frac{sin~\theta_1}{sin~\theta_2}$
$sin~\theta_2 = \frac{c_2~sin~\theta_1}{c_1}$
$sin~\theta_2 = \frac{(2.254\times 10^8~m/s)~sin(90^{\circ})}{3\times 10^8~m/s}$
$\theta_2 = sin^{-1}(\frac{(2.254\times 10^8~m/s)~sin(90^{\circ})}{3\times 10^8~m/s})$
$\theta_2 = 48.7^{\circ}$