Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Review Exercises - Page 410: 45

Answer

The sixth roots of -64 are: $2~(cos~30^{\circ}+i~sin~30^{\circ})$ $2~(cos~90^{\circ}+i~sin~90^{\circ})$ $2~(cos~150^{\circ}+i~sin~150^{\circ})$ $2~(cos~210^{\circ}+i~sin~210^{\circ})$ $2~(cos~270^{\circ}+i~sin~270^{\circ})$ $2~(cos~330^{\circ}+i~sin~330^{\circ})$ None of these roots are real.

Work Step by Step

$z = -64 + 0~i$ $z = 64(cos~180^{\circ}+i~sin~180^{\circ})$ $r = 64$ and $\theta = 180^{\circ}$ We can use this equation to find the sixth roots: $z^{1/n} = r^{1/n}~[cos(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})+i~sin(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})]$, where $k \in \{0, 1, 2,...,n-1\}$ When k = 0: $z^{1/6} = 64^{1/6}~[cos(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(0)}{6})+i~sin(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(0)}{6})]$ $z^{1/6} = 2~(cos~30^{\circ}+i~sin~30^{\circ})$ When k = 1: $z^{1/6} = 64^{1/6}~[cos(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(1)}{6})+i~sin(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(1)}{6})]$ $z^{1/6} = 2~(cos~90^{\circ}+i~sin~90^{\circ})$ When k = 2: $z^{1/6} = 64^{1/6}~[cos(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(2)}{6})+i~sin(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(2)}{6})]$ $z^{1/6} = 2~(cos~150^{\circ}+i~sin~150^{\circ})$ When k = 3: $z^{1/6} = 64^{1/6}~[cos(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(3)}{6})+i~sin(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(3)}{6})]$ $z^{1/6} = 2~(cos~210^{\circ}+i~sin~210^{\circ})$ When k = 4: $z^{1/6} = 64^{1/6}~[cos(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(4)}{6})+i~sin(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(4)}{6})]$ $z^{1/6} = 2~(cos~270^{\circ}+i~sin~270^{\circ})$ When k = 5: $z^{1/6} = 64^{1/6}~[cos(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(5)}{6})+i~sin(\frac{180^{\circ}}{6}+\frac{(360^{\circ})(5)}{6})]$ $z^{1/6} = 2~(cos~330^{\circ}+i~sin~330^{\circ})$ The imaginary part of the root is zero only when the angle is $0^{\circ}$ or $180^{\circ}$. Since none of the solutions have these angles, the imaginary part is always non-zero. Therefore, there are no real roots.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.