Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.5 Polar Equations and Graphs - 8.5 Exercises - Page 395: 55

Answer

$r = 4-4~cos~\theta$ This graph is a cardiod. We can see this graph below:

Work Step by Step

$r = 4-4~cos~\theta$ When $\theta = 0^{\circ}$, then $r = 4-4~cos~0^{\circ} = 0$ When $\theta = 60^{\circ}$, then $r = 4-4~cos~60^{\circ} = 2$ When $\theta = 90^{\circ}$, then $r = 4-4~cos~90^{\circ} = 4$ When $\theta = 120^{\circ}$, then $r = 4-4~cos~120^{\circ} = 6$ When $\theta = 180^{\circ}$, then $r = 4-4~cos~180^{\circ} = 8$ When $\theta = 240^{\circ}$, then $r = 4-4~cos~240^{\circ} = 6$ When $\theta = 270^{\circ}$, then $r = 4-4~cos~270^{\circ} = 4$ When $\theta = 300^{\circ}$, then $r = 4-4~cos~300^{\circ} = 2$ Since $\frac{4}{4} = 1$, this graph is a cardiod. We can see this graph below:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.