Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Review Exercises - Page 291: 15

Answer

$\theta=-60^o$

Work Step by Step

RECALL: $y=\arcsin{(x)} \longrightarrow \sin{y}=x$, $y$ is in the interval $[90^o, 90^o]$ Thus, $\theta=\arccos{(-\frac{\sqrt3}{2})}$ implies that $\cos{\theta}=-\frac{\sqrt3}{2}$. Note that $\sin{(60^o)}=\frac{\sqrt3}{2}$. Since sine is an odd function, then $\sin{(-x)}=-\sin{x}$. This means that $\sin{(-60^o)}=-\sin{(60^o)}=-\frac{\sqrt3}{2}$ Therefore, $\theta=\arcsin{(-\frac{\sqrt3}{2})}\longrightarrow \theta=-60^o$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.