Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.4 Equations Involving Inverse Trigonometric Functions - 6.4 Exercises - Page 286: 35

Answer

$\frac{4}{5}$

Work Step by Step

Given: $cos^{-1}x=sin^{-1}\frac{3}{5}$ Consider $sin^{-1}\frac{3}{5}=P$ $sin P=\frac{3}{5}$ Apply trigonometric identity for sine. $sinx=\frac{opp}{hyp}=\frac{3}{5}$ Thus, $adj=\sqrt {5^{2}-3^{2}}=\sqrt {25-9}=\sqrt {16}=4$ Likewise, $cosP=\frac{adj}{hyp}=\frac{4}{5}$ $cos^{-1}x=P$ gives $x=cosP$ Hence, $x=\frac{4}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.