Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.4 Equations Involving Inverse Trigonometric Functions - 6.4 Exercises - Page 286: 29

Answer

$x=-2{\sqrt 2}$

Work Step by Step

Given: $\frac{4}{3}cos^{-1}\frac{x}{4}=\pi$ $\frac{4}{3}cos^{-1}\frac{x}{4}=\frac{3 \pi}{4}$ $\frac{x}{4}=cos(\frac{3 \pi}{4})$ $x=4cos(\frac{3 \pi}{4})$ (Multiply by 4) Apply definition of arccosine. $x=-4(\frac{\sqrt 2}{2})$ Hence, $x=-2{\sqrt 2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.