Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.6 Half-Angle Identities - 5.6 Exercises - Page 242: 7

Answer

$$\cos\Big(\frac{\pi}{8}\Big)=\frac{\sqrt{2+\sqrt2}}{2}$$ 7 should be matched with D.

Work Step by Step

$$\cos\Big(\frac{\pi}{8}\Big)$$ Examine $\frac{\pi}{8}$: $$\frac{\pi}{8}=\frac{\pi}{4\times2}=\frac{1}{2}\times\frac{\pi}{4}$$ Therefore, $$\cos\Big(\frac{\pi}{8}\Big)=\cos\Big(\frac{1}{2}\times\frac{\pi}{4}\Big)$$ - Recall the half-angle identities: $$\cos\Big(\frac{A}{2}\Big)=\pm\sqrt{\frac{1+\cos A}{2}}$$ So, if we replace $A=\frac{\pi}{4}$, we would have $$\cos\Big(\frac{1}{2}\times\frac{\pi}{4}\Big)=\pm\sqrt{\frac{1+\cos\frac{\pi}{4}}{2}}$$ $$\cos\Big(\frac{1}{2}\times\frac{\pi}{4}\Big)=\pm\sqrt{\frac{1+\frac{\sqrt2}{2}}{2}}$$ $$\cos\Big(\frac{1}{2}\times\frac{\pi}{4}\Big)=\pm\sqrt{\frac{\frac{2+\sqrt2}{2}}{2}}$$ $$\cos\Big(\frac{1}{2}\times\frac{\pi}{4}\Big)=\pm\sqrt{\frac{2+\sqrt2}{4}}$$ $$\cos\Big(\frac{1}{2}\times\frac{\pi}{4}\Big)=\frac{\pm\sqrt{2+\sqrt2}}{2}$$ Thus, $$\cos\Big(\frac{\pi}{8}\Big)=\frac{\pm\sqrt{2+\sqrt2}}{2}$$ Now about the sign, it depends on the sign of $\cos\Big(\frac{\pi}{8}\Big)$. $\frac{\pi}{8}$ lies in quadrant I, where $\cos\theta\gt0$. So, $\cos\Big(\frac{\pi}{8}\Big)\gt0$. We need to select the positive square root. $$\cos\Big(\frac{\pi}{8}\Big)=\frac{\sqrt{2+\sqrt2}}{2}$$ 7 should be matched with D.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.