Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.6 Half-Angle Identities - 5.6 Exercises - Page 242: 24

Answer

$cos~\frac{x}{2} = \sqrt{\frac{10-3\sqrt{10}}{20}}$

Work Step by Step

Since $\frac{\pi}{2} \lt x \lt \pi$, then $\frac{\pi}{4} \lt \frac{x}{2} \lt \frac{\pi}{2}$. The angle $\frac{x}{2}$ lies in quadrant I, so $cos~\frac{x}{2}$ is positive. $cot~x = \frac{adj}{opp} = -3 = \frac{-3}{1}$ If the adjacent side is -3 and the opposite side is 1, then the hypotenuse is $\sqrt{(-3)^2+(1)^2} = \sqrt{10}$ $cos~\frac{x}{2} = \sqrt{\frac{1+cos~x}{2}}$ $cos~\frac{x}{2} = \sqrt{\frac{1+(\frac{-3}{\sqrt{10}})}{2}}$ $cos~\frac{x}{2} = \sqrt{\frac{\frac{10-3\sqrt{10}}{10}}{2}}$ $cos~\frac{x}{2} = \sqrt{\frac{10-3\sqrt{10}}{20}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.