Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.5 Double-Angle Identities - 5.5 Exercises - Page 236: 7

Answer

$$\cos2\theta=\frac{17}{25}$$ $$\sin2\theta=-\frac{4\sqrt{21}}{25}$$

Work Step by Step

$$\sin\theta=\frac{2}{5}\hspace{2cm}\cos\theta\lt0$$ $$\sin2\theta=?\hspace{2cm}\cos2\theta=?$$ To find $\sin2\theta$ and $\cos2\theta$, it would be wise to find the unknown $\cos\theta$. Using Pythagorean Identities: $$\cos^2\theta=1-\sin^2\theta=1-\Big(\frac{2}{5}\Big)^2=1-\frac{4}{25}=\frac{21}{25}$$ $$\cos\theta=-\frac{\sqrt{21}}{5}\hspace{1.5cm}(\cos\theta\lt0)$$ Now we apply the Double-Angle Identities for $\cos2\theta$ and $\sin2\theta$: $$\cos2\theta=\cos^2\theta-\sin^2\theta=\Big(-\frac{\sqrt{21}}{5}\Big)^2-\Big(\frac{2}{5}\Big)^2=\frac{21}{25}-\frac{4}{25}$$ $$\cos2\theta=\frac{17}{25}$$ $$\sin2\theta=2\sin\theta\cos\theta=2\times\frac{2}{5}\times\Big(-\frac{\sqrt{21}}{5}\Big)$$ $$\sin2\theta=-\frac{4\sqrt{21}}{25}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.