Answer
$E$. $\sin x$
Work Step by Step
Use the Cosine of a Difference formula:
$\cos(x+y)=\cos x \cos y -\sin x \sin y$
$\cos \left(\frac{ \pi}{2}-x\right)=\cos \frac{\pi}{2}\cos x+\sin\frac{\pi}{2} \sin x=0\times\cos x+1\times \sin x=\sin x$
The expression $3$ in Column I matches the expression $E$ in Column II.