Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.3 Sum and Difference Identities for Cosine - 5.3 Exercises - Page 218: 20

Answer

$\cos75^\circ$ is the cofunction needed to find.

Work Step by Step

$$\sin15^\circ$$ Cosine is the cofunction of sine. That means the question asks to write $\sin15^\circ$ in terms of sine and an angle. In other words, what is the value of $\theta$ with which $$\cos\theta=\sin15^\circ\hspace{1cm}(1)$$ According to Cofunction Identity: $\cos\theta=\sin(90^\circ-\theta)$ Apply this to the equation $(1)$: $$\sin(90^\circ-\theta)=\sin15^\circ$$ $$90^\circ-\theta=15^\circ$$ $$\theta=90^\circ-15^\circ=75^\circ$$ Therefore $\cos75^\circ$ is the answer.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.