Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Quiz (Sections 5.1-5.4) - Page 230: 8

Answer

$$\sin\Big(\frac{\pi}{3}+\theta\Big)-\sin\Big(\frac{\pi}{3}-\theta\Big)=\sin\theta$$ The above equation is an identity.

Work Step by Step

$$\sin\Big(\frac{\pi}{3}+\theta\Big)-\sin\Big(\frac{\pi}{3}-\theta\Big)=\sin\theta$$ The left side would be tackled first. $$A=\sin\Big(\frac{\pi}{3}+\theta\Big)-\sin\Big(\frac{\pi}{3}-\theta\Big)$$ For this problem, obviously the identities for sum and difference of sines must be applied. $$\sin(A+B)=\sin A\cos B+\cos A\sin B$$ $$\sin(A-B)=\sin A\cos B-\cos A\sin B$$ Therefore, $$A=\sin\frac{\pi}{3}\cos\theta+\cos\frac{\pi}{3}\sin\theta-\Big(\sin\frac{\pi}{3}\cos\theta-\cos\frac{\pi}{3}\sin\theta\Big)$$ $$A=\sin\frac{\pi}{3}\cos\theta+\cos\frac{\pi}{3}\sin\theta-\sin\frac{\pi}{3}\cos\theta+\cos\frac{\pi}{3}\sin\theta$$ $$A=\Big(\sin\frac{\pi}{3}\cos\theta-\sin\frac{\pi}{3}\cos\theta\Big)+\Big(\cos\frac{\pi}{3}\sin\theta+\cos\frac{\pi}{3}\sin\theta\Big)$$ $$A=2\cos\frac{\pi}{3}\sin\theta$$ $$A=2\times\frac{1}{2}\times\sin\theta$$ $$A=\sin\theta$$ Thus, the left side is equal to the right. This equation is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.